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A numerical integration or quadrature technique (based on Richardson extrapolation 
to the trapezoidal rule as formulated by Romberg) was developed and applied to 
evaluate some Fourier integrals which occur in the theory of an inkite cylindrical 
antenna. The computational method is based on an abscissa spacing which varies as 
powers of two and which is determined by the relative convergence of two successive 
approximations to the integral over a given interval. This results in a minimum-to- 
maximum abscissa spacing ratio as small as 10-6. Numerical examples are given for 
integration contours following the real axis and deforming into the complex plane. 

INTRODUCTION 

The solutions to many physical problems may be expressed as integrals resulting 
from integral transformations, integration over source distributions, etc. It is 
frequently impossible to evaluate such integrals analytically unless some restrictive 
approximations can be made so that numerical integration must then be used. The 
purpose of this paper is to describe a powerful numerical integration (or quadra- 
ture) technique which is useful for a wide range of commonly encountered integrals. 

The numerical approach was developed specifically in order to Grid the admit- 
tance of an Snite, cylindrical, perfectly-conducting dipole antenna. This problem 
arises in connection with the use of an antenna in the ionosphere as a diagnostic 
probe. The antenna is excited at a circumferential gap of nonzero thickness and 
is immersed in a lossy plasma medium that is, in the general case, both compres- 
sible and anisotropic. 

The axial surface current on the antenna is readily expressed as a Fourier integral 

* The research reported in this paper was supported by the National Aeronautics and Space 
Administration under Headquarters Contract No. NAsr-54(05). 

1 MBAssociates, Post 08ke Box 196, San Ramon, California 94583. Formerly with High 
Altitude Bngineering Laboratory, University of Michigan, AM Arbor, Michigan. 

265 



266 MILLER 

over the transform variable /I which, when evaluated at the edge of the exciting gap 
and for unit excitation voltage, yields the itinite antenna admittance. The details 
of the formulation are given by Miller [4]. Analytic evaluation of this Fourier 
integral for the antenna admittance is not possible (except on an approximate 
basis for the free-space case), so a numerical approach must be used. Since the 
integrand function is time-consuming to calculate and may peak sharply at some 
value of p, while at the same time the integration range of /3 goes from zero to 
infinity, the quadrature technique used must optimize (as nearly as possible) the 
number of i&grand evaluations required to invert the Fourier integral. 

It should be mentioned that the Romberg variable interval width quadrature 
technique, outlined below, is a special case of adaptive Simpson quadrature, which 
is described in the book by Davis and Rabinowitz [2] and the recent article by 
Lyness [3]. The technique considered here differs from usual adaptive Simpson 
quadrature in that it uses interval bisection rather than trisection, and it applies 
what appears to be a more efficient convergence testing criterion. In addition, the 
method may further reduce computation time by deforming the integration contour 
into the complex plane, as illustrated below for the infinite antenna problem. 
Besides the infinite antenna case, some numerical examples are considered. 

NUMERICAL DEVELOPMENT AND EXAMPLES 

1. Injinite Antenna Problem 

The infinite antenna current I(z) may be written in terms of its Fourier-trans- 
formed counterpart as 

I(z) = [” i(p) cos@z) d/3, (1) 
JO 

where z is the axial distance along the cylinder, measured from the center of the 
exciting gap of thickness 6. 

Consider curve 1, in Fig. 1. The real part of i@), i&3), is shown as a function of 
FE (contour Cd for the case of the isotropic incompressible plasma and the follow- 
ing conditions: a frequency f of 2 MHz; an electron plasma frequency f, of 
1.5 MHz; an electron collision frequency Y of 104 se+; an electron temperature T 
of 0°K; an antenna radius c of 1 cm; and 6 = 0.1 cm. The sheathless case (A’ = 0) 
is shown, where X denotes the thickness in electron Debye lengths of a concentric 
free-space layer, or vacuum sheath, which is used in the analysis to approximate 
the actual inhomogeneous ion sheath. 

The most striking feature exhibited by I1 is the sharp peak in i&I) at a j? value 
of approximately 0.03 m-l. This peak corresponds to the wave number of a plane 
electromagnetic (EM) wave propagating in the plasma medium. The current will 
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propagate down the infinite antenna with a wave number corresponding to the 
EM wave, since the peak near /3 = 0.03 m-l acts nearly as a delta function in the 
Fourier equation [Eq. (l)]. The peak in i&3) is related to the source-free charac- 
teristic waves which may propagate on an infinite cylinder. 

FIG. 1. The real part of the transformed current i,&?) as a function of j3 along contour C, 
for the infinite cylindrical antenna in an isotropic plasma medium. 

Efficient and accurate numerical evaluation of Eq. (1) requires a sophisticated 
numerical quadrature technique, in view of the integrand behavior (Fig. 1) and 
the fact that each i@) value may need about 1 set or more of computer time 
(IBM 7090). A variable abscissa spacing (or interval width) must be used, since it 
is not economical to employ, over the entire j? axis, the abscissa point density 
required to integrate the peak accurately. In addition, it is highly desirable to use 
a quadrature technique based on equally spaced abscissa points over each integra- 
tion interval, since any increase of order, iteration, or decrease of interval size, 
should make use of previously calculated integrand values. 

2. ROMBBRG QUADRATURE 

The Newton-Cotes class of quadrature formulas is based on equally-spaced 
abscissa points. Special cases of this method are the well-known trapezoidal rule 
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for the order one, and the parabolic rule for the order two. An extension of the 
trapezoidal rule by Romberg, involving Richardson extrapolation, leads to a 
particularly powerful quadrature technique that, with some modification in 
application, is quite successful in integrating functions of the type shown in Fig. 1. 

Richardson extrapolation involves a linear combination of two computed 
answers, Fi and F, , for the integral off(x) over the integration range (a, b) (Ralston 
[7]; Bauer er al., [l]). Let 

F = Fl + g aihliy 
i=K 

(24 

F = Fz f 2 athi, (2b) 
i=K 

where F denotes the correct answer, hl and h, are the intervals used, the ai are 
constants which may depend on f(x) but not on h, and the sums represent the 
errors in the calculation (which are taken to be of order K). Multiplying Eq. (2a) by 
hK, Eq. (2b) by hK, subtracting, and setting h, = 2h, = 2h, we obtain the 
following 

F = y-5 G-2 - fi) + jg+, ( $1 y ) a&“. (3) 

It may be seen that the leading error term in Eq. (3) is of order K + 1. Thus, the 
error in the new computed value in Eq. (3) has been reduced without evaluating 
the integrand at more abscissa points than are required to obtain F, . In addition, 
all the abscissa points required to find Fl are also used to calculate Fz . This satisfies 
our requirement that any change in the quadrature scheme should make use of 
previously calculated integrand values. Richard extrapolation may be applied to 
any computation based on a l&d spacing h, but, for reasons to be given below, 
the trapezoidal rule appears best fitted for that role. 

Let the trapezoidal rule answer for 2k subintervals on the integration range of 
(a, b) be denoted by T0.k , which may be expressed as 

where 

h, = (b - c.1)/2~ 

and 

f;: = f (a + W. 
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Then the application of Richardson extrapolation to TO,k and TO,k+l leads, in the 
same way as Eq. (3) above, to the following: 

T1.k = M4 - 1)1(4To.k+1 - ToA (5) 

where the factor of four appears because the trapezoidal rule is of order K = 2. In 
general, we may define Tm,k in a manner analogous to Eq. (5) as 

T m,k = [1/(4m - 1M4mTm--l.k+~ - Tm--l.kh (6) 

This is essentially the method developed by Romberg. It is based on bisection, or 
halving, of the abscissa spacing at each successive application of the trapezoidal 
rule. Other schemes could be used, but bisection results in the fewest number of 
additional integrand evaluations at each point in the calculation while still meeting 
our requirement that all previous integrand values be used. Note, that if the latter 
requirement were relaxed to allow consideration of schemes which give a less 
rapidly increasing sequence of abscissa points, then the method may become 
numerically unstable, or more susceptible to round-off errors (Bauer et al. [I]). 

This form of Eq. (6) results from applying Richardson extrapolation to 
trapezoidal rule answers, which are in turn subjected to Richardson extrapolation, 
until the Romberg answer for 2k subintervals on (a, b) is obtained as Tkso . It is 
convenient to arrange the Tii’S in a triangular matrix: 

T 0.0 
T TLO 0.1 

T 0.2 TLI Tz,o 
T 0.3 T.,2 T2.1 T3.o 

The left-hand column contains the trapezoidal rule answers for successive 
halving of the subinterval size. The quantities Tlvk in the second column are the 
parabolic rule answers for 2k subintervals, and those in the next column T,,, are 
the Newton-Cotes answers for the order 4 and 2” subintervals; but for m > 2, 
there is no direct relation between Tmsk and a Newton-Cotes rule [7]. 

If the second derivative of f(x) is bounded on (a, b), then as k + co, TOBk con- 
verges to F. Further, Tk,o also converges to F (Ralston [7]). It is obvious that if 
Romberg integration is to be useful, the T k.O should converge more rapidly,to F 
than the TO,k . If the functionf(x) is not changing too rapidly over the integration 
range (a, b), this will generally be the case. Convergence towards F will occur down 
the To,, column and along the Tkeo diagonal, as well as along the rows connecting 
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them. However, bracketing a sharp peak in f(x) by (a, b) may actually result in 
oscillating Tk,O Romberg answers which converge more slowly to F than do the 
To,n trapezoidal rule answers. To make the Romberg technique more efficient and 
to more nearly optimize the number of integrand evaluations required, the integra- 
tion range (a, b) should be divided into smaller intervals. This will give a variable 
abscissa spacing suited to the integrand behavior and will avoid bracketing a 
sharply varying f(x) by a too-wide integration interval. Assuming that f(x) is 
continuous in (a, b), a sequence of intervals (ai , b,) which spans the range (a, b) 
can be chosen which ensures the desired smoothness of f(x) over each interval 
(ai, bJ. The power of the Romberg technique is partly due to the method it 
provides for choosing the (ai , b,). One way in which this may be done in integrating 
a curve of the type shown in Fig. 1 is as follows. 

3. Variation of the Interval Width 

Initially an arbitrary interval size in fi is used to begin the calculation at fi = 0, 
and the quantities T,,, , T,,, , and T,,, are computed. This operation requires three 
abscissa points. A comparison of T,,, and T,,, determines whether the desired 
accuracy (or convergence) has been attained; we require that 

I 
V1.o - To.3 

T 
< Ec, 

1.0 

where the maximum acceptable convergence error is EC. If this inequality, or 
convergence test, is not satisfied, To,2 , T,,, , and T,,, are then computed. This 
requires two more abscissa points midway between the points already calculated. 
The quantities T,,, and Ta,o are now compared for convergence, and if it is still not 
attained, the original interval is divided in two. The new T-matrix elements are 
computed for the new intervals from the previously evaluated integrand values 
(which have been stored in the computer). This process of halving the interval is 
continued until the convergence test is satisfied, using no less than three nor more 
than five i&grand values per interval. 

On the other hand, if the convergence test is satisfied on a given interval, the 
succeeding interval is doubled in size if the resulting endpoints are consistent with 
the abscissa points of previously calculated integrand values. Suppose, for example, 
the sequence of calculated abscissa points is as shown in Fig. 2, with abscissa points 
1 and 4 the end points of the fist interval on which the convergence criterion is 
satisfied. Then the second interval used will be that defined by abscissa points 4 
and 3, and which has the same width on the first interval. If convergence occurs on 
this interval as well, then the third interval to be used will have end points 3 and 2, 
and is then twice the width of intervals 1 and 2. Convergence on interval 3 would 
result in a fourth interval with twice the width of interval 3, etc. It should be 
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observed that with the bisectioning scheme used to decrease the interval size, the 
stored integrand values are always encountered in three point intervals which 
progressively double in size, with the exception of the &-st interval encountered 
after the first successful convergence test, which is of the same size as the first 
interval. 

lNTERVAl. 1 r: ; T  INTERVAL 2 j----- INTERVM 3-------j I 

I I I 
I 

FIG. 2. Typical abscii point spacing sequence which may result using interval bisection and 
Romkrg variable interval width quadrature. 

Note that one of the advantages of the Romberg technique is the convergence 
test provided by comparison of elements in the T array. This test does not need 
additional i&grand evaluations, as do other rules (trapezoidal, Simpson’s, 
Gaussian, etc.), which require an increase of quadrature order to provide two 
answers for a convergence test. The two row elements T,,,-,,, and T,,, , rather than 
the two Romberg answers T,,,-l,o and T,,,, , are used for the convergence test, since 
the row elements have been found by experience to generally provide an earlier and 
more sensitive indication of convergence. A demonstration of this is provided by 
the T array given in Ralston ([7], p. 125) for the example 

I 
3 

dxlx. 
1 

At least three points per interval are used (k = 1) since this is the minimum 
number required for Romberg integration. A maximum of five points (k = 2) is 
allowed, since halving the interval would require these abscissa points to check the 
convergence on each of the two new intervals, while the use of more than five per 
interval would generally result in a greater point density than necessary over part 
of the interval. In particular, when a sharp peak inf(x) is bracketed by the interval, 
T,,,, may converge more slowly than T,,1 (when k > 2) and the convergence test 
may then become unreliable. This restriction to a maximum of five abscissa points 
per interval is perhaps the most important feature of the technique; its influence on 
the accuracy and efficiency of the variable interval width Romberg method cannot 
be over emphasized. Application of this technique to curves of the kind shown in 
Fig. 1 consistently sets the minimum interval size (and maximum abscissa point 
density) at the peak of the curve, which results in minimum-to-maximum abscissa 
spacings of lo-” or smaller. 
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While Richardson extrapolation could be applied to other quadrature rules to 
begin with (for example, the parabolic rule), use of the trapezoidal rule allows a 
convergence test involving T,,, and T,,, to be made with the fewest abscissa points. 
Richardson extrapolation as applied to the parabolic rule as a special case for 
example leads to the quantity Tsvk. 

It is worthwhile, before concluding this discussion on the interval width variation, 
to mention a potential limitation of the convergence criterion established by 
Eq. (7). A smoothly varying function whose sampled values within the interval 
under consideration happen to fall near a straight line may satisfy Eq. (7) while 
producing a TO., value which is grossly in error. 

Increasing the minimum number of abscissa points used per interval could 
alleviate this possibility to some extent, though not eliminate it since T,,+,,, and 
T,,, will be close in value whenever the 2” + 1 abscissa values chosen lie near a 
polynominal curve of degree 2m - 1. Application of the technique to arbitrary 
integrals should, therefore, keep in mind this potential accuracy limitation. The 
author has, however, not knowingly encountered any difficulties from this false 
convergence in using the method. 

4. The Error Test 

A key to the accurate and efficient evaluation of an integral, using the above 
method, is specification of the acceptable convergence error, EC, which will give 
the overall computational accuracy, E, desired. The value used for E, should be a 
function both of the integrand variation and the interval width to maintain a 
nearly uniform interval-to-interval absolute accuracy. Intuitively, it seems ineffi- 
cient for two adjacent intervals to possess absolute errors which differ by one or 
two orders of magnitude. This might conceivably happen if the relative accuracies 
in each interval were the same. 

The quadrature summing process, adding together the T values for all the 
intervals, may be viewed as the addition of a column of numbers. Each number in 
this column should be sufficiently accurate to achieve the desired accuracy in the 
sum with a minimum of integrand evaluations. Choices which might be used to 
determine EC for this purpose are: 

(1) EC const, 
(2) EC scaled to the largest T value in the column, and 
(3) EC scaled to the sum of T values preceding the current T value. 

Of these options, method (2) is least conservative while still achieving an overall 
error of about EC. 

If the largest T values were known before the calculation, use of (2) would give 
T values which have their first uncertain digit in the same location relative to the 
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decimal point. However, the largest T value is not known until the computation is 
finished. Thus, before applying method (2), EC must be scaled according to the 
maximum T value encountered up to that point in the calculation. Consequently, 
the error test using the EC determined by (2) is somewhat more conservative in the 
calculation before the maximum T value has been encountered. 

Method (2) determines EC from 

EC(n) = E 1 T,JT(“) 1 
(8) 

= ET,. 

The superscript n denotes the n-th interval where the Romberg answer is Tfn), T, 
is the maximum T value encountered to that point, and E is the desired overall 
relative error. However, the E,(n) of Eq. (8) can become larger than one. In this 
case, the error test becomes meaningless. This, and the fact that it may be desirable 
to keep E&n) equal to E until T,,, exceeds T tn) by a specified margin [to obtain a 
somewhat more conservative E&z)] suggests an alternative to Eq. (8): 

l+AT, 
Ed4 = E [ 1 + BT’ ]y 

where B < A and A < 1. We see that E,(n) remains about equal to E until 
TR N A-‘, then increases monotonically as TR increases until TR - B-l; beyond 
this point, E&z) is relatively constant with a value of about EA/B. 

The use of Eq. (9) to determine EC has been successful in obtaining a final 
relative accuracy of ER close to E for a wide variety of integrals, including the 
examples given below. Generally, the results are rather insensitive to the value of A, 
but somewhat more dependent on B. The usual values employed in the calculations 
presented below have been A = 1O-2 and B = 10 x E or A, whichever is smaller. 
Note that the use of a variable EC value is mandatory for the evaluation of integrals 
having sharp cusps, such as example (c) below. A constant EC value, in such 
cases, may result in a relative computation error which decreases by several orders 
of magnitude with a small decrease of E below a critical value. Because of the 
halving and doubling characteristics of the Romberg variable interval width 
method, if EC were not varied there would be a range of ER which could not be 
obtained regardless of the specified value of E. 

Note that if the integrand under consideration oscillates in sign, it is better to 
sum the negative and positive parts separately. The final answer is the ditference 
between these two sums. Since the error of each is well-determined, the final error 
can also be estimated accurately. However, because errors are additive, the overall 
answer will be less accurate than either sum, thus, requiring a smaller E value than 
would otherwise be necessary. If the positive and negative sums are of the same 
magnitude, the final answer may be unreliable even with a smaller value of E. 
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The quadrature method outlined above is applicable to both finite and infinite 
(but convergent) range integrals, over any contour in the complex plane. When 
applied to an infinite range integral, it is necessary to estimate the truncation error 
which arises from termination of the integration range at a finite value. This can 
be done by comparing an ananalytically-integrated, large-argument appro- 
ximation of the integrand, with the quadrature answer to determine the point at 
which the truncation error is acceptably small. Contour integration in the complex 
plane requires treating a complex integrand, where the real and imaginary parts are 
subjected to the convergence and truncation error tests separately. (Of course this 
may also happen on the real axis.) 

Integrand functions, which have an oscillatory or sharply peaked behavior for 
which analytically integrable approximations are available, are frequently en- 
countered. In this case, the numerical integration can be carried out more efficiently 
by integrating the difference between the actual and approximate i&grand and 
adding to this answer the analytic integral of the approximation. This technique is 
successfully employed in certain electromagnetic problems (Miller and Burke [5]), 
and is also frequently used to sum infinite series. 

Finally, we may mention that the quadrature routine described above was 
initially programmed to save all calculated integrand values. If, for example, the 
original or starting integration interval is bisected a number of times, many of the 
integrand values calculated would not be required to perform the quadrature 
process over the smaller intervals which result. These integrand values were stored 
sequentially in the computer, and then recalled as the integration encountered 
their abscissas. This was an economical procedure since the storage and recall of 
these values took much less computer time than their calculation. In handling 
integrals whose integrands are not especially time-consuming to obtain, it may be 
more efficient to discard the unused values, and recalculate them as required. An 
option to follow either procedure would be a desirable feature of a general-purpose 
library routine. 

An example of the integrand value sequence and numbering system used was 
presented in Fig. 2. The stored integrand values are retrieved via an index vector 
which successively locates them according to their original order of calculation as 
the abscissa is monotonically increased. The end points and widths of the intervals 
are also similarly recorded, so that a minimum of reordering is required with each 
interval bisection. A computer listing for the variable interval width algorithm is 
available from the author. 

5. Numerical Examples 

The integral [Eq. (I)] of the curve Z1 (Fig. 1) was evaluated by the above scheme. 
It required a total of 105 integral evaluations to obtain an inIInite antenna 
conductance value of 7.073 x lo4 mho with a specified error E of 5 x 1O-S and 
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an estimated truncation error (the error which results from truncating the infinite 
integration interval at a finite value of the upper limit) of less than one unit in the 
fourth sign&ant figure. To check this result (as well as to evaluate the feasibility 
of avoiding the near singularity exhibited by curve I,), a second value for the con- 
ductance was calculated using the deformed contours C, and C, shown in Fig. 3. 
This resulted in curves Zz and Z3 , respectively. A conductance value in this case 
was obtained from integrating Ze and Z9 as 7.065 x lo-” mho, with the same trun- 
cation and convergence errors as before, using a total of 45 abscissa points. The 
difference between these two answers is well within the specified error, and a con- 
siderable decrease in the number of points was required to perform the integration, 
using the deformed contour. 

10’ - 
“I 

100 - 
CONTOUR C2 

BR 

fp = 1.5 WI2 

u = 104 SEC-' 

T=O'K 

10-2 

INTEGKAW, I2 FRO!: CfNWR C2 

0.02 0.04 0.06 0.08 0.10 

s, or N* h-9 

FIG. 3. The real part of the transformed current i&9) as a function of fi along contours C, 
and C, for the infbite cylindrical antenna in an isotropic plasma medium. 

The spacing between successive integrand evaluations and the corresponding 
TK,O values as a function of the abscissa value /I for the integrand Z, is shown in 
Fig. 4. As a result of the sharp decrease in abscissa spacing in the vicinity of the 
peak, the i&grand evaluations cluster about the peak in Z1 . This demonstrates that 
the technique concentrates the integrand evaluations in regions where the inte- 
grand is changing most rapidly. In addition, the maximum-to-minimum abscissa 
spacing ratio varies in the vicinity of the integrand peak by more than three orders 
of magnitude. This ratio increases to about IO8 when the larger abscissa values 
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(near the truncation point at approximately 1000 m-l) are considered. Obviously, 
the abscissa spacing required to integrate the peak of II accurately could not be 
used to cover the entire range of integration, so a variable abscissa spacing is 
necessary. The contribution to the integral from each interval is relatively constant 
over the peak in II , since the interval width decreases in proportion to the increase 
in the integrand. This is advantageous from a convergence error viewpoint because 
it results in the addition of a sequence of nearly equal numbers of comparable 
accuracy. 

f%G. 4. The variation of the abscissa spacing and T #,0 Value for integration of curve ZI of 
Fig. 1 by the Romberg variable interval-width technique. 

The advantage of the Romberg variable interval width technique is not restricted 
in application to sharply peaked functions of the type shown by curve II . A 
comparison of relative accuracies obtained from Simpson’s rule, Romberg quadra- 
ture using a fixed abscissa spacing over the integration interval, and the present 
technique, are shown as a function of the number of integrand evaluations in 
Fig. 5 for the three integrals below: 

I l(l - 0.5X3-1 dx, (a) 
0 

I l (1 + loo$)-1 dx, @I 
0 

s l 1 0.5 + x p/2 dx. (c) 
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(The relative accuracy ER is defined as the absolute value of the difference between 
the exact answer and the quadrature answer divided by the exact answer.) The 
superiority of the variable interval width method over the straightforward Romberg 
technique and Simpson’s rule is clearly shown. 

-2 

-4 

-6 

b 

9 

-0 2 
3 

-10 

(a) /‘Cl-0.5x’Y’dx 
LEGEND 

0 
I. SIMPSON’S RULE 

-2 2. ROMBERG 
QUADRATURE 

-4 3. 

h 

VARIABLE 
INTERVAL WIDTH 

2 -6 

-0 

g- -0 
3’ 

-10 

(b) j1C1+100x2)-1dx 
0 

0.5 1.0 
,WJ,;~( N) “’ 

2.5 

(c) I_:10.5+x,1/2dr 

FIG. 5. Comparison of the relative accuracies ER obtained for three integrals. The number 
of integrand evaluations is denoted by N. 

These results were compared with the recent study presented by O’Hara and 
Smith [6], who considered various quadrature techniques, including Gaussian and 
Curtis-Clenshaw quadrature for three integrals similar to the examples given here. 
This comparison shows that the variable interval width Romberg technique is 
generally competitive with these more accurate methods for examples (a) and (b) 
and exceeds the most accurate method of those considered for example (c). 

The importance of varying the interval width for a function which is not sharply 
peaked in the integration range is demonstrated by these examples. It would 



278 MILLER 

seem to indicate that a comparison of numerical quadrature technique which does 
not allow for variable interval widths may be somewhat misleading as to the 
relative power of the various methods. The conclusion reached by O’Hara and 
Smith [6] that the Romberg method is inferior to Clenshaw-Curtis and Gaussian 
quadrature would seem to need reexamination. A particular feature of the variable 
interval width technique, it should be noted again, is that the abscissa points are 
equally spaced in the interval, and no integrand values need be discarded when the 
abscissa spacing is decreased. This is contrary to the case for Clenshaw-Curtis 
quadrature when the interval size is decreased, and the Gaussian quadrature, when 
the order or interval size is changed. The variable interval width technique may 
generally be expected to require fewer total integrand evaluations to achieve a 
desired accuracy. The accuracy obtained from Gaussian and Clenshaw-Curtis 
quadrature, however, may be greater than that provided by the Romberg variable 
interval width method when only those integrand evaluations required to calculate 
the final answer are counted. 

An additional advantage of the Romberg variable interval width technique is 
the conformity obtained between the acceptable convergence error and the actual 
integration error. The results of this technique for examples (a), (b), and (c) are 
presented in Table I. The convergence test used provides a reliable, generally con- 

TABLE I 

Actual Integration Accuracy Achieved for a Specified Convergence Error” 

Specitied Error E 

A = 10-l 
B = min[A, lOE] 

10-l 
10-a 
10-n 
10-a 
10-S 
10-e 
lo-’ 
10-a 

Relative Accuracy ER 
Integrand 

,: ( - O.sB)x ‘)--I dx J: (1 + l&-1 du 

7 x 10-a 4 x 10-e 4 x 10-a 
6 x lo-’ 4 x 10-p 4 x 10-a 
5 x lo-’ 4 x 10-s 4 x 10-a 
3 x 10-S 3 x 10-G 2 x 10-h 
1 x 10-s 2 x 10-E 2 x 10-s 
1 x IO-’ 7 x 10-S 3 x 10-S 
3 x 10-O 3 x 10-D 4 x 10-1 
9 x 10-11 1 x 10-O 2 x 10-n 

a Using the Rombe.rg variable interval width method for the integrals shown. 

servative estimate of the actual error. This is a particularly attractive feature of the 
Romberg technique, and one which provides considerable confidence in the results 
obtained from it. 
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CONCLUSION 

The Romberg integration technique with variable interval width provides an 
efficient and powerful quadrature method. The technique is a general-purpose 
routine which is especially useful for integrating functions which are time-con- 
suming to calculate. It provides an accurate and sensitive test on the convergence 
accuracy at each stage in the calculation, without requiring redundant computa- 
tions of the integrand function. Since it employs abscissa spacings based on powers 
of two, the technique may make use, in the final answer, of all integrand values 
calculated. The resultant variable interval width gives an abscissa point density 
which is tailored to and determined by the function being integrated. Because the 
method provides a reliable convergence test, it is well suited to be a library routine 
where the user need only specify, in addition to the function to be integrated, the 
integration endpoints and accuracy desired. These features, together with a con- 
tour integration capability and an integrand-value storage (if desired), provide a 
versatile, reliable, and powerful quadrature method for general-purpose computer 
usage. 
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